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REFINED CONTINUOUS THERMODYNAMIC TREATMENT 

SOLUTIONS 
FOR THE LIQUID-LIQUID EQUILIBRIUM OF COPOLYMER 

MARGIT T. RATZSCH,* DIETER BROWARZIK, and HORST KEHLEN 

Chemistry Department 
“Carl Schorlemmer” Technical University 
Merseburg 4200, German Democratic Republic 

ABSTRACT 

Based on an improved calculation of activity coefficients, continuous 
thermodynamics using a generalized divariate Stockmayer distribution 
is applied to the liquid-liquid equilibrium of random copolymer solu- 
tions. The effects of the chemical polydispersity on the cloud-point 
curve, the shadow curve, the spinodal, and the critical point are dis- 
cussed. The theory can account for the occurrence of three-phase 
equilibria as well as for the phase separation in pure copolymers. 

INTRODUCTION 

Random copolymers show polydispersity both with respect to molecular 
weight and with respect to chemical composition. The phase equilibrium 
can be influenced appreciability by both polydispersities. Continuous ther- 
modynamics based on the divariate Stockmayer distribution is very useful 
for mathematical description. A simplified version of the lattice model due 
to Barker was used previously to calculate the activity coefficients [ 1, 21 . 
The present paper is based on an improved calculation of the activity coeffi- 
cients. The phase separation of a pure polydisperse copolymer may be de- 
scribed in this way. Despite the improvement, the calculation of the cloud- 
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904 RATZSCH, BROWARZIK, AND KEHLEN 

point and shadow curves can be reduced to the numerical solution of only one 
equation that does not contain integrals. Equations for the spinodal, the criti- 
cal point, and the double critical point are given. By using model calculations, 
it is shown how the chemical polydispersity influences the phase equilibrium 
of copolymer solutions. If the phase separations of the copolymer solution 
and of the pure copolymer are located in the same temperature range, a three- 
phase equilibrium may occur. 

DlVARlATE DISTRIBUTION FUNCTION 

A copolymer consisting of two kinds of monomer units, a and (3, is con- 
sidered. If a standard segment is chosen, the segment numbers ra and rp can 
be introduced. Then the total segment number r and the segment fraction Y 
of the a-monomer units within the molecules are defined by 

r = r ,  t r p  and Y = r , / r .  (1) 

Thus, the composition of a polydisperse copolymer sample may be described 
by the divariate distribution function W(r, Y) in which W(r, Y) dr dY gives the 
segment fraction of all copolymer species with segment numbers between r 
and r t dr and a-monomer segment fractions between Y and Y t dY [ 11 . 
Hence, W(r, Y) has to fulfill the normalization condition 

The most important moments of this distribution function are 

F= sr I, r W(r, Y) d Y dr, 

F= Jr Jy YW(r,Y) dY dr, 

N 

P = 1, 5, YZ W(r,Y)  dY dr. 
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REFINED CONTINUOUS THERMODYNAMIC TREATMENT 905 

N 

The (-1)st moment l / r  eauals the reciprocal of the number-average seg- 
ment number 7. And 
YZ , respectively, which usually (i.e., if the densities of the two monomer 
units are not very different) roughly equal the corresponding weight averages. 

For random copolymers, the distribution function obeys the following 
generalized expression due to Stockmayer [3] : 

y, YZ are the segment-number averages of r, Y, and 

where r is the r-function. The first factor is a generalized Schulz-Flory 
distribution with respect to r (ro = 0; YO = -). The second factor is a 
Gaussian distribution with respect to Y. The limits of the domain of defi- 
nition of a Gaussian function are -00 and + m, whereas Y is limited to the 
range 0 to 1. Nevertheless, the resulting error is very small because random 
copolymers possess a narrow distribution with respect to chemical composi- 
tion. The parameters k and E ,  characterizing the polydispersities of the co- 
polymer, are given by 

ACT1 VI TY COE F F ICI E NTS 

For a system containing a solvent A and a copolymer B, the solvent mole- 
cule is chosen as the standard segment, for simplicity. To calculate the activ- 
ity coefficients, an expression for the segment-molar excess Gibbs free energy 
EE of the mixture is needed. Here, cE is the excess of Gibbs free energy per 
mole of segments with respect to a Flory-Huggins mixture (with x = 0) [ 13 . 
Based on a simplified version of Barker’s lattice model [4], such an expression 
can be written on a molecular basis. The residual art of the change of Gibbs 
free energy of mixing Agres, i.e., the product of G and the total number of 
segments of the mixture, reads 

4 

Agres  =N*AaAUAa + G p ~ u ~ p  + (N*ap  -N*,pl)Auap, ( 6 )  

where N*A~, N*A~, and @ p  are contact pair numbers for contacts between 
solvent segments A and/or between copolymer segments a and 0, and GapI 
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906 RATZSCH, BROWARZIK, AND KEHLEN 

is the contact pair number for the heterogeneous system formed by the pure 
copolymer species. The quantities A u A ~ ,  and Auap are differences of 
interaction energies of the type 

When the random mixture assumption is adopted, the contact pair numbers 
are given by 

i j  

where Nij is the number of copolymer molecules identified by the segment 
number ri and the segment fraction of a-monomers 9. \1, is the total segment 
fraction of all copolymer species, and z is the coordination number of the 
lattice. 

The improvement with respect to the earlier treatment [ 1,2] consists in 
the calculation of g p l .  In the earlier papers, epl was, as an approxima- 
tion, set equal to the value of e p  resulting from Eq. (8c) for the pure co- 
polymer ($ = 1) that is a mixture of the individual copolymer species. How- 
ever, kres has to refer to the heterogeneous system formed by the pure co- 
polymer species and not to the mixture mentioned. Therefore, the improved 
expression for g o l  has to read 

Applying a continuous description, the route outlined earlier [ 1 1  leads to 

Z / R T  = $ (1 - $) x t Lb c [ 9 - (Py] '; )( = a t b 7 t C ( i y .  (10) 
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REF I NED CONT I N UOUS THERMODYNAMIC T R E ATM E NT 907 

Here R is the gas constant and T is the absolute temperature, while a. b, and 
c are given by 

wherzkB is Boltzmann’s constant. As a result of this improvement, the term 
$c [YZ - ( ?)j2] occurs additionally in Eq. (10). For Z E  this additional term 
is only a small correction, but for the phase equilibrium calculations an im- 
portant contribution may arise, as will be shown. 

To simplify practical calculations, the abbreviations 

are introduced, and ”b and u, are assumed to be independent - of temperature 
and pressure. For the segment-molar activity coefficients, 
pressions result in 

and T B ,  the ex- 

CLOUD-POINT CURVE AND SHADOW CURVE 

The equilibrium between two phases, ’ and ”, is considered where phase ‘ 
is assumed to be known, i.e., the total segment fraction of all copolymer 
species $’ and the divariate distribution function of the copolymer W’(r ,  Y) 
are given. Then the total segment fraction of the coexisting phase ” and the 
equilibrium temperature T at a specified pressure are to be determined. The 
plot of T against $’ is called the “cloud-point curve” and the plot of T 
,against $” is called the “shadow curve.” Furthermore, one is interested in 
the distribution function W”(r, Y) of the coexisting phase ”. 

The calculation is performed in a way analogous to that described in pre- 
vious papers [ 1, 21 . On the basis of a Stockmayer distribution of the type 
of Eq. (4) for the phase ’, all occurring double integrals may again be calcu- 
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908 RATZSCH, BROWARZIK, AND KEHLEN 

lated analytically, The distribution function W"(r,  Y) also proves to be a gen- 
eralized Stockmayer distribution of the type of Eq. (4) with the same values 
of k and e. Instead of F' and F', now 7" and Y" occur, and they are related 
to 7' and y' by 

-,, 

and 

Two equations are obtained to calculate a, the only parameter in the 
F / R T  relation (Eq. 10) that depends on temperature, and $": 

The temperature T may be calculated if the temperature dependence of the 
parameter u is known. Combination of the last two equations results in 
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REFINED CONTINUOUS THERMODYNAMIC TREATMENT 909 

where C* and a are given by 

By replacing C* and a in Eq. (19) according to Eqs. (20) and (21), a relation 
is obtained that contains only one unknown, $". Hence, the phase equilibrium 
problem of polydisperse copolymer solutions reduces to the numerical solu- 
tion of only one equation. Equations ( 1  9)<2 1)  may be used only if E # 0 be- 
cause otherwise C* vanishes. For E = 0, the parameter a has to be determined 
with the aid of Eq. (1 7) or Eq. (18). 

If $" GZ 1 ,  the second phase contains practically no solvent, and it proves 
appropriate to neglect the phase equilibrium condition for solvent A and to 
base the calculations only on the phase equilibrium condition for the copoly- 
mer. This results in a single equation giving the quantity a as a function of 
$'. Mathematically, this equation can be obtained by subtracting Eq. (17) 
from Eq. (1 8), which gives a quadratic polynomial in a. The interesting solu- 
tion reads 

where 

The expression for M reads 
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910 RATZSCH, BROWARZIK, AND KEHLEN 

For a pure copolymer (9’ = $” = 1) and with Eq. (1 1) for the interaction 
energies, which are assumed to be independent of temperature, Eqs. ( 2 2 )  and 
(23) result in 

For ideal random copolymers and ? = 0.5, E equals 0.25. If the interac- 
tion energy Auap multiplied by Avogadro’s number lies between 500 and 
1000 J/mol (the coordination number z can take values between 4 and 12), 
a phase separation is to be expected for pure liquid copolymers. As more de- 
tailed considerations [5] show, the temperature given by Eq. (24) equals the 
critical temperature of the pure copolymer. 

SPINODAL AND CRITICAL POINT 

The relations for the spinodal and for the critical point may be derived by 
the methods presented earlier [6 ,7]  , but these equations can also be derived 
in a simple way from a series expansion [5] . On denoting the left-hand side 
of Eq. (17) or (18) by the symbol F and forming the partial derivative with 
respect to $”, the spinodal condition is obtained. The second and the third 
partial derivatives of F with respect to $ ’ I  yield conditions for the critical 
point and for a double critical point. A double critical point occurs if a stable 
and an unstable critical point merge. (A detailed discussion of multiple criti- 
cal points is presented in a paper by Solc, Kleintjens, and Koningsveld [8] ). 
Hence, the following relations apply: 

aF 
a l L ” = O  spinodal 

a2F 
0 ;  ~ = O  a$” a p  

- aF - -  critical point 

a2F a3F 
- 0;- = 0;- - - 0 

aF 
a$!! a$I’z a $ I 1 3  

double critical point __-  

In detail, the spinodal condition reads 
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REFINED CONTINUOUS THERMODYNAMIC TREATMENT 91 1 

1 [l - 2 € U V , $ ]  __ + =- -- - - 2a[1 + V F  + vc(P)’] 
{I:$ r ’ k t l ;  

where Q = a(r). The critical point may be calculated by additionally taking 
into account the following condition: 

r ( k +  1)2 $’ } - 3 ~ u ’ ( ~ ~ + 2 v , ~ ) ~ = O .  (27)  

For a double critical point, a further condition has also to be fulfilled: 

1 1 k(k + 2)(2k t 3) 1 -1 $ 3  

The common slope of the cloud-point curve and of the spinodal at the criti- 
cal point (subscript cr)  is given by 

2 1 k ( 2 k t  1) 1 _ _ _ _ - - ~ _ _  - 

(29) 
~ ( ~ c r )  (1 - $cr)’ r (k  + 1)’ $cr2 

According to Eq. (29) ,  the slope (aT/aJ/),, for a given copolymer depends 
only on the critical concentration J/,--, on a(Tcr), and on the derivative 
(da/dT)0. 

To give an idea of how the chemical polydispersity influences the critical 
quantities, the relations for J l c r  and T,, will be expanded with respect to E 

at E = 0, assuming A U A ~  to be independent of the temperature. If one con- 
siders only the first-order terms, the result reads 

JF ( k  + 1)’ 
* DE,  
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912 RATZSCH, BROWARZIK, AND KEHLEN 

+ 2 4 . ]  1 k(k t 2) d z  1 k(k + 2) * D E [ ,  
r ( k t  1)2 r ( k t  1)2 

where 

It is seen that the critical concentration GCr  and the critical temperature 
Tcr of the copolymer increase with increasing chemical polydispersity. The 
effect of chemical polydispersity decreases with increasing number-average 
r' of the segment number of the copolymer. This result is to be expected 
because the Stockmayer distribution is narrower with respect to chemical 
composition if the copolymer molecules are shorter. Obviously, the param- 
eter D is very important in discussing the effect of chemical polydispersity 
on the phase equilibrium. With the aid of Eqs. (10) and (12), D may also 
be expressed by the relation 

- 

Hence, if zE is small and depends strongly on the average y' of the chemical 
composition, a large effect on the chemical polydispersity will occur. 

MODEL CALCULATIONS 

A solution of an ideal random copolymer with relatively short chains will 
be considered. Therefore, the following parameter values for the Stockmayer 
distribution, Eq. (4), were chosen. 7' = 20, k = 1, 9' = 0.5, E = 0.25. Further- 
more, A U A ~  is assumed to be positive and independent of the temperature. 
The following three cases will be studied: 
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REF I NED CONTl NUOUS THERMODYNAMIC TREATMENT 913 

1 I .  A U A ~  = - - 2 AUA p ;  (Vb +v,= -1.5) 

The critical concentration of the copolymer, $ C T ,  and 1 / ~ ~  (according to 
Eq. 10) are shown as functions of the parameter vc for the three cases in Figs. 
1 and 2 .  As a result of the assumptions introduced, the reciprocal of x is 
proportional to the temperature and, hence, l/xcr corresponds to the critical 

.8 ’ yc -1  0 

FIG. 1 .  Critical concentration J/o versus V, for Cases I, 11, and I11 : (-) 
stable critical points, (- -) unstable critical points, (0) double critical point. 
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I - 
Xcr ' 

15 

1.4 

1 3  

1 2  

1 .1 

\€= 0 
\ \ 

\ \ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

P 

'E 

\ 
I * 

1 v  
C 

- 1  0 

FIG. 2.  (proportional to the critical temperature) versus uC. Symbols 
as in Fig. 1. 

temperature Tcr. For vanidung chemical polydispersity ( E  = 0), the values 
QCr  = 0.1622 and l/xcr = 1.4840 are obtained. This result does not depend 
on the choice of vb and vc. 

Generally, the critical concentration is higher for chemical polydispersity 
( E  f 0) than for zero polydispersity, due to the symmetry of the chemical 
part of the Stockmayer distribution. The magnitude of this effect is deter- 
mined by the decrease of the parameter D from Case I to Case 111. The criti- 
cal temperature may take higher or lower values than for zero chemical poly- 
dispersity. In Case 111, a stable and an unstable critical point exist. These 
critical points merge, forming a double critical point for uc = 1.4364. Further- 
more, in Case 111, two additional critical points, not shown in Figs. 1 and 2, 
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1 
x - 

1.5 

1.: 

1.1 

',\ \ 

0.2 0.4 Y 

FIG. 3.  Phase diagram for vanishingly small chemical polydispersity ( E  = 0): 
(-) cloud-point curve, (- -) shadow curve, (- - -) spinodal, (0 )  critical point. 

occur: the critical point of the pure copolymer and an unstable critical point 
situated at low temperatures, where the liquid state cannot be expected to 
exist. 

The next figures demonstrate the influence of chemical polydispersity on 
the cloud-point curve, the shadow curve, and the spinodal. The quantity 1/x, 
which is proportional to the temperature, is plotted versus the segment mole 
fraction of the copolymer $ for zero chemical polydispersity in Fig. 3. The 
phase diagram is the same for all values of Vb and vc. Figures 4 and 5 present 
the phase diagrams for representative examples of Cases 1 and 11. The dia- 
grams do not show any pecularities. The maxima of the cloud-point curves 
are shifted to lower concentrations \L as a result of the chemical polydis- 
persity. 
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11% 

1.7 

1.5 

1 .: 

,e-\ 
/ \ 

/ 
/ 

I 
I 

I 

\ 

D 

0.2 0.4 cy 

FIG. 4. Phase diagram for Case I with vc = -1. Symbols as in Fig. 3. 

Contrary to Cases I and 11, the phase diagram for Case 111 is more compli- 
cated. The parameter vC may take values that cause phase separation of the 
pure copolymer and of the copolymer solution to occur in the same temper- 
ature range. Then, three critical points CPl,  CP2, and CP3 occur in the inter- 
esting temperature range. Depending on the parameter vc, different possibili- 
ties can occur. 

point, T. The cloud-point curve is subdivided into three branches: 1, 2 ,3 .  
The transitions from Branch 1 to Branch 2 (not shown in Fig. 6 )  and from 
Branch 2 to Branch 3 take place in a cusp point C. Branch 1 is stable for 
$ < $ T ,  where $T is the concentration of the three-phase point, T ;  it is 
metastable for $T < $ < $sl, where $sl means the concentration of the 
intersection point of the spinodal and Branch 1 of the cloud-point curve; and 

Figure 6 shows the case of a three-phase equilibrium with the three-phase 
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11) 

1. 

1. 

1. 

I 
I 
I 

I 
I 
I 
I I 

I 

- 
0 0.2 0 .!I v 

FIG. 5 .  Phase diagram for Case I1 with vC = 0.2. Symbols as in Fig. 3 

it is unstable for $ > $sl. Branch 2 of the cloud-point curve is situated corn- 
pletely below the spinodal and, hence, it is completely unstable, while Branch 
3 is unstable for $ < $s3, metastable for $s3 < $ < $ T ,  and stable for $ 2 
$r. The three branches 1 ,2 ,  and 3 of the shadow curve are related to the 
three branches 1, 2, and 3 of the cloud-point curve, respectively. They inter- 
sect the related branches of the cloud-point curves at the critical points CPI , CP2, 
and CP3, respectively. Here CPl is a stable critical point, CP2 is an unstable criti- 
cal point, and CP3 is the critical point of the pure copolymer and again a stable 
critical point. At those temperatures where the cloud-point curve goes from 
Branch 1 to Branch 2 ,  and from Branch 2 to Branch 3, the shadow curve goes from 
the related Branch 1 to the related Branch 2 (not shown in Fig. 6) ,  and from the 
related Branch 2 to the related Branch 3. The three-phase point, I, is the intersec- 
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11% 

1.5 

1.3 

1 .1  

0.9 

CP 3 

0 0 2  04 06 0 8  - q J  

FIG. 6. Phase diagram for Case 111 with uc = 1 . 1 ,  exhibiting a three-phase 
equilibrium : (-) Branches 1,2,  and 3 of the cloud-point curve; (- -) Branches 
1, 2,  and 3 of the shadow curve; (- . -) spinodal; (0 )  critical points CP1, CP2, 
and CP3; (C) cusp point; (S1, S2, S3) intersection points of the spinodal with 
the branch of the cloud-point curve indicated; ( T )  three-phase point. 

tion of Branches 1 and 3 of the cloud-point curve. Here, three phases do coexist: 
the given phase with the concentration J,T and two other phases characterized 
by those points of the related Branches 1 and 3 of the shadow curve that ex- 
hibit the same ordinate value as T. When measuring the cloud-point curve, 
the experiment provides Branch 1 if J, < J,T and Branch 3 if J, 2 $T.  Hence, 
the experimental cloud-point curve shows a break at the three-phase point, T. 
Behavior of this kind is well known from the calculations of Solc [8-101 con- 
cerning solutions of homopolymers with logarithmic normal molecular weight 
distribution. 

the cloud-point curve and of the shadow curve may become difficult if the 
concentration J," of the shadow phase approaches unity. Then the cloud- 
point curve may be calculated by Eqs. (23) and (24). 

ing to Eqs. (1 1) and (12), this corresponds to a higher value of A u , ~  and, 

In performing the numerical calculations, the computation of Branch 3 of 

The phase diagram shown in Fig. 7 refers to a higher value of vc.  Accord- 
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llXf 

1.7 

1 5 

1.3 

1.1 

/' 
/' 

91 9 

CP 3 

0 0.2 0.4 0.6 0.8 - tp 
FIG. 7. Phase diagram for Case 111 with vc = 1.3 .  Symbols as in Fig. 6. 

according to Eq. (24), to the occurrence of phase separation for the pure CO- 

polymer at higher temperatures. Now, Branch 3 of the cloud-point curve 
belonging to the critical point CP3 of the pure copolymer is always stable. 
Branch 1 of the cloud-point curve is metastable for $ Q 3/sl and unstable 
otherwise. Analogously, Branch 2 of this curve is metastable for \cf < \cfsZ 
and unstable otherwise. Correspondingly, now the critical point CPl 
is a metastable critical point and the cusp point, C, shown in the figure 
arises from Branches 1 and 2 of the cloud-point curve (instead of Branches 
2 and 3). There is no longer a three-phase point. 

A further increase of vc results in a further reduction of the distance be- 
tween the two critical points CP1 and CP2. For vc = 1.4364, the distance 
equals zero, i.e., the initially stable critical point CPl and the unstable critical 
point CP2 merge, forming a double critical point. The phase diagram for this 
situation is given in Fig. 8. The coincidence of the two critical points also 
means that Branches 1 and 2 of the cloud-point and of the related shadow 
curve vanish. 

The phase diagrams presented in Figs. 6-8 show that a relatively simple 
Gibbs energy relation that requires very small computational expense in the 
context of continuous thermodynamics can explain complicated phase be- 
havior of copolymer solutions, including a three-phase equilibrium. 
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CP 3 

L 
0 0.2 0 4 0.6 0.8 + qJ 

FIG. 8. Phase diagram for Case I11 with v, = 1.4364 exhibiting a double 
critical point (0). Symbols as in Fig. 6. 
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